PREPARATION OF SINGLE-WALLED CARBON NANOTUBE SAMPLES FOR MICROPHOTOLUMINESCENCE

C. Martinez^{1, 2}, T. Abe^{1, 3}, S. Nanot⁴, J. Kono^{4, 5}

¹NanoJapan Program, Rice University ²Department of Materials Science and Engineering, University of California Berkeley ³Department of Physics, Chiba University ⁴Department of Electrical and Computer Engineering, Rice University ⁵Department of Physics and Astronomy, Rice University

This study investigates whether or not poly(methyl methacrylate) (PMMA) increases the photoluminescence (PL) signal emitted from individual single-walled carbon nanotubes (SWCNTs). PL from SWCNTs displays blinking rather than a constant signal over time, thereby reducing the total signal collected. Increasing the PL signal is a necessary step for the design of opto-electronic devices and should provide a better understanding of the blinking mechanism in 1-D systems. The effect of PMMA on the PL of SWCNTs has been reported only once[†]. We want to take advantage of this fundamental study in order to increase the signal collected, while decreasing the collection time of our PL setup by spin-coating our substrates with PMMA. A reliable SWCNT deposition procedure is a necessary preliminary step. Usually to make samples of SWCNTs; however, this process leads to unwanted amalgamation of SWCNTs around the electrodes. To avoid this problem, we deposit SWCNTs on a SiO₂ sample and characterize it. Drop-dry deposition is used and samples are imaged with an Atomic Force Microscope (AFM), to confirm that SWCNTs are correctly individualized on the substrate. The micro-PL is observed using a separate set-up before and after spin-coating the sample with PMMA. We propose a repeatable and reliable procedure to spin-coat PMMA on a sample of individual SWCNTs to increase their optical emission properties.

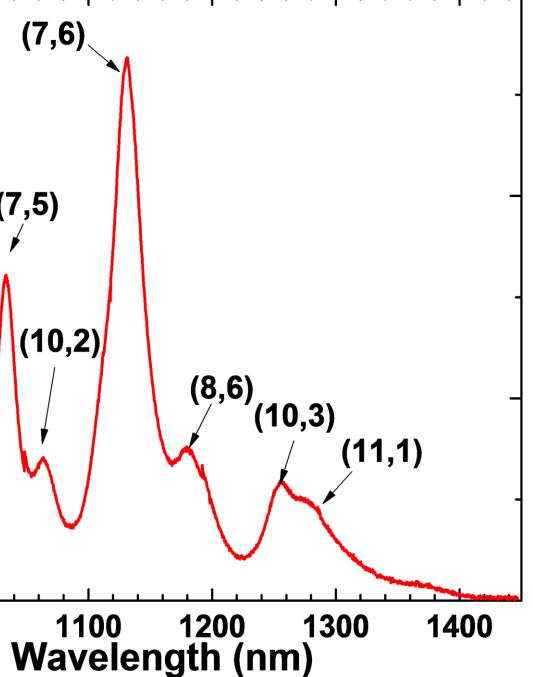
[†] Ai, N., et al. Suppression of Blinking and Enhanced Exciton Emission for Individual Carbon Nanotubes. **ACS Nano**. Online Publication. (2011)

¹ NanoJapan Program, ² Department of Materials Science and Engineering, University of California Berkeley, ³ Department of Physics, Chiba University, ⁴ Department of Electrical and Computer Engineering, Rice University, ⁵ Department of Physics and Astronomy, Rice University

Introduction

- Increasing photoluminescence (PL) signal is necessary for the design of opto-electronic devices and should provide deeper understanding of the blinking mechanism in 1-D systems.
- Polymethyl methacrylate (PMMA) has been proposed to increase the PL signal emitted from individual single-walled carbon nanotubes (SWCNTs).[†]
- We propose a repeatable and reliable procedure to spin-coat PMMA on a sample of individual SWCNTs to increase their optical emission properties.

Sample Preparation: Drop-Dry Deposition of HiPCo SWCNTs **Deposition Procedure:** 2. Droplet is washed off $00:15_{sec}$ with DI water and IPA tO action of the water. Single Droplet of SWCNT Clean Si0₂ substrate 300 µm Sample is blown dry. 3. 300 µm SWCNTs suspended Experiment Details: HiPCo SWCNTs in DCO surfactant Diluted: 30% SWCNTs 3x10° (7,6) • PL spectrum of the suspension used for deposition and <mark>ک</mark>2x10⁵ (7,5) assigned chirality of nanotubes. (660nm (8,3) (10,2) laser diode excitation) (6,5) (8,6) . 1x10⁵ (10,3) (11,1)


1000

1100

Preparation of Single-Walled Carbon Nanotube Samples for Microphotoluminescence

<u>C. Martinez^{1, 2}, T. Abe^{1, 3}, S. Nanot⁴, J. Kono^{4, 5}</u>

reduce capillary

Atomic Force Microscopy (AFM) Imaging

• Used to confirm that SWCNTs are correctly individualized on the substrate.

AFM Operation: (tapping mode)

- AFM cantilever is excited by a piezo-electric stack, causing tip oscillation near resonant frequency.
- Tip is deflected upon encounter with the surface. Tip is maintained at constant height during sample scanning.
- reflected laser beam reveals changes in oscillation frequency and amplitude, providing material characteristic information.

AFM Images of samples after deposition:

Image 1: Height channel, 5 x 5 µm scan

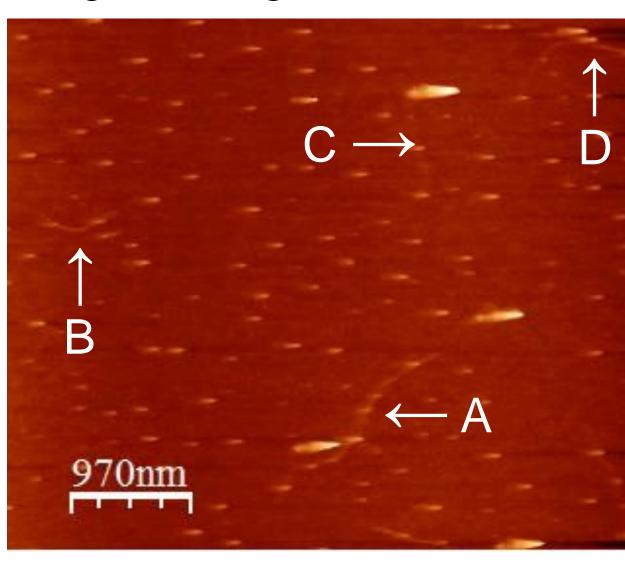
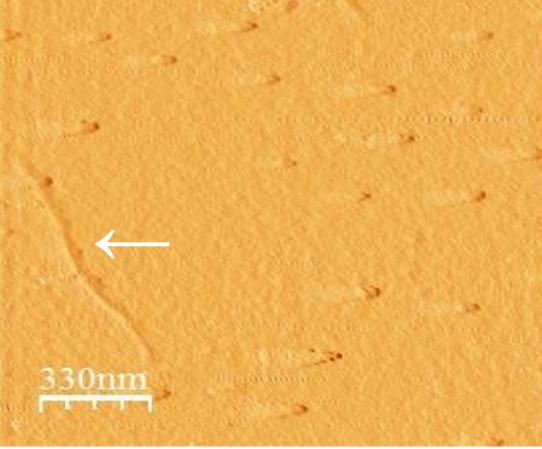



Image 2: Amplitude channel, 1 x 1 µm

 \checkmark About 1 nanotube per μ m: Nanotubes are correctly individualized.

This material is based upon work supported by the National Science Foundation's Partnerships for International Research & Education Program (OISE-0968405).

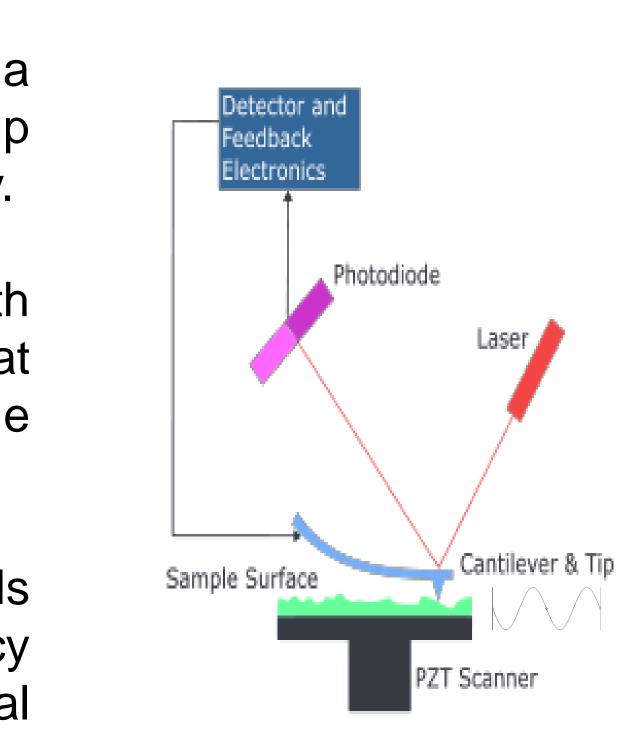
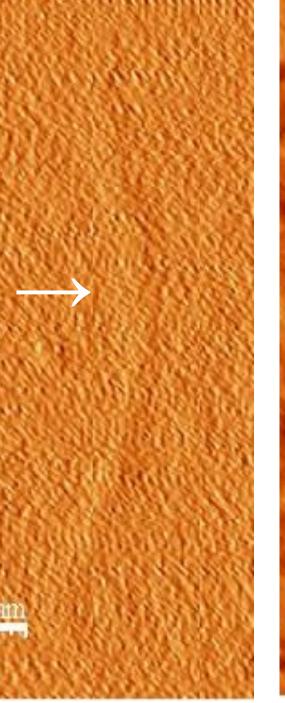
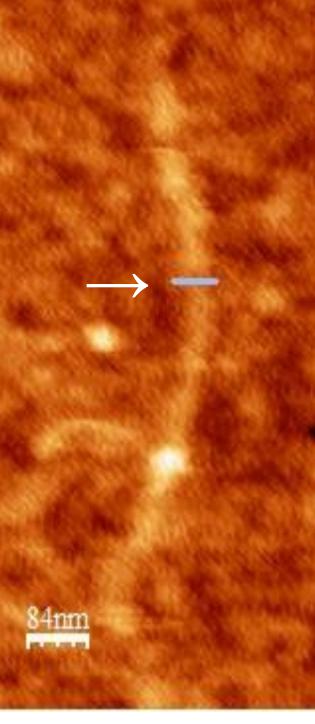
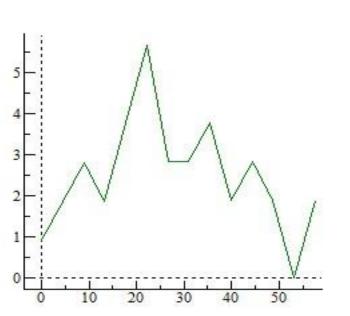





Image 3: Individual nanotube

Height profile for Image 3:

Sample Analysis: SWCNTs?

	Image 1				Image 2	Image 3
	Α	B	С	D		
Height	~8 Å	~1.4 nm	~4 Å	~1.2 nm	~7 Å	~8 Å
Length	1.6 µm	600 nm	500 nm	300 nm	120 nm	700 nm
Diameter	16 Å	2.8 nm	8 Å	2.4 nm	14 Å	16 Å
SWCNT?	Yes	Yes	Yes	Yes	Yes	Yes

Sample Preparation: PMMA Layer

- machine.
- homogeneous thickness.
- Baking: Hot plate for ~2 days at 150° C. PMMA to polymerize.

A possible explanation for expected signal increase:

Conclusions and Future Work

- 1 nanotube/ µm.
- observe the photoluminescence.
- an electric field.

References

⁺Ai, N., et al. "Suppression of Blinking and Enhanced Exciton Emission for Individual Carbon Nanotubes." ACS Nano. 5, 2664-2670. (2011)

For further questions, contact:

Camille Martinez: camille.leeandra@berkeley.edu

• 2 drops of PMMA deposited on sample in spin-coating

Spinning: 5 seconds at 500 rpm, 45 seconds at 5000 rpm. Treatment yields a flat surface with controlled,

• Removes PMMA impurities by desorption, and allows

• A lot of mechanisms enhance blinking; what they have in common is that they come from adsorbed chemical species. PMMA is protecting the SWCNTs from them.

The preparation yielded a sample that was welldistributed with individual SWCNTs at approximately

A micro-PL analysis was started on the sample to

Future Work involves the study of the SWCNTs under